Browsing by Author Zhuangzhuang, Miao
Showing results [1 - 1] / 1
Crowd counting provides an important foundation for public security and urban management. Due to the existence of small targets and large density variations in crowd images, crowd counting is a challenging task. Mainstream methods usually apply convolution neural networks (CNNs) to regress a density map, which requires annotations of individual persons and counts. Weakly-supervised methods can avoid detailed labeling and only require counts as annotations of images, but existing methods fail to achieve satisfactory performance because a global perspective field and multi-level information are usually ignored. We propose a weakly-supervised method, DTCC, which effectively combines mult... |