Browsing by Subject Cantor’s continuum hypothesis
Showing results [1 - 1] / 1
The first two of the twenty-three unsolved problems that David Hilbert famously proposed at the 1900 International Congress of Mathematicians (ICM) in 1900 dealt with issues associated with the real number continuum. The first problem concerned Cantor’s continuum hypothesis, whereas the second dealt with Hilbert’s attempt to establish the existence of the continuum by proving the consistency of his axioms for characterizing its properties. Few have noted, however, that Hilbert himself linked the larger goals of Cantor’s theory of transfinite arithmetic with those of his own program for axiomatization. |