Item Infomation


Title: Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms
Authors: Nguyen, Van Toan
Advisor: Chu, Manh Hung
Nguyen, Duc Hoa
Nguyen, Van Duy
Dang, Thi Thanh Le
Nguyen, Thi Thu Hoa
Nguyen, Ngoc Viet
Phan, Hong Phuoc
Nguyen, Van Hieu
Issue Date: 2021
Publisher: Journal of Hazardous Materials
Abstract: The selective detection and classification of NH3 and H2S gases with H2S gas interference based on conventional SnO2 thin film sensors is still the main problem. In this work, three layers of SnO2/Pt/WO3 nanofilms with different WO3 thicknesses (50, 80, 140, and 260 nm) were fabricated using the sputtering technique. The WO3 top layer were used as a gas filter to further improve the selectivity of sensors. The effect of WO3 thickness on the (NH3, H2, and H2S) gas-sensing properties of the sensors was investigated. At the optimal WO3 thickness of 140 nm, the gas responses of SnO2/Pt/WO3 sensors toward NH3 and H2 gases were slightly lower than those of Pt/SnO2 sensor film, and the gas response of SnO2/Pt/WO3 sensor films to H2S gas was almost negligible. The calcification of NH3 and H2 gases was effectively conducted by machine learning algorithms. These evidences manifested that SnO2/Pt/WO3 sensor films are suitable for the actual NH3 detection of NH3 and H2S gases.
Description: Q1
URI: https://www.sciencedirect.com/science/article/abs/pii/S0304389421001448?via%3Dihub
https://dlib.phenikaa-uni.edu.vn/handle/PNK/1931
Appears in CollectionsBài báo khoa học
ABSTRACTS VIEWS

41

FULLTEXT VIEWS

0

Files in This Item:
Thumbnail
  • 10.1016@j.jhazmat.2021.125181.pdf
      Restricted Access
    • Size : 8,45 MB

    • Format : Adobe PDF