Item Infomation


Title: 
Nanoscale Film Thickness Gradients Printed in Open Air by Spatially Varying Chemical Vapor Deposition
Authors: 
Abdullah H. Alshehr
Jhi Yong Loke
Viet Huong Nguyen
Alexander Jones
Hatameh Asgarimoghaddam
Louis-Vincent Delumeau
Ahmed Shahin
Khaled H. Ibrahim
Kissan Mistry
Mustafa Yavuz
David Mu�oz-Rojas
Kevin P. Musselman
Issue Date: 
2021
Publisher: 
Advanced Functional Materials
Abstract: 
Nanoscale films are integral to all modern electronics. To optimize device performance, researchers vary the film thickness by making batches of devices, which is time-consuming and produces experimental artifacts. Thin films with nanoscale thickness gradients that are rapidly deposited in open air for combinatorial and high-throughput (CHT) studies are presented. Atmospheric pressure spatial atomic layer deposition reactor heads are used to produce spatially varying chemical vapor deposition rates on the order of angstroms per second. ZnO and Al2O3 films are printed with nm-scale thickness gradients in as little as 45 s and CHT analysis of a metal-insulator-metal diode and perovskite solar cell is performed. By testing 360 Pt/Al2O3/Al diodes with 18 different Al2O3 thicknesses on one wafer, a thicker insulator layer (?7.0 nm) is identified for optimal diode performance than reported previously. Al2O3 thin film encapsulation is deposited by atmospheric pressure chemical vapor deposition (AP-CVD) on a perovskite solar cell stack for the first time and a convolutional neural network is developed to analyze the perovskite stability. The rapid nature of AP-CVD enables thicker films to be deposited at a higher temperature than is practical with conventional methods. The CHT analysis shows enhanced stability for 70 nm encapsulation films.
URI: 
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202103271
https://dlib.phenikaa-uni.edu.vn/handle/PNK/2819
Appears in Collections
Bài báo khoa học
ABSTRACTS VIEWS

30

FULLTEXT VIEWS

0

Files in This Item:

There are no files associated with this item.