Item Infomation
Title: |
Nanoscale Film Thickness Gradients Printed in Open Air by Spatially Varying Chemical Vapor Deposition |
Authors: |
Abdullah H. Alshehr Jhi Yong Loke Viet Huong Nguyen Alexander Jones Hatameh Asgarimoghaddam Louis-Vincent Delumeau Ahmed Shahin Khaled H. Ibrahim Kissan Mistry Mustafa Yavuz David Mu�oz-Rojas Kevin P. Musselman |
Issue Date: |
2021 |
Publisher: |
Advanced Functional Materials |
Abstract: |
Nanoscale films are integral to all modern electronics. To optimize device performance, researchers vary the film thickness by making batches of devices, which is time-consuming and produces experimental artifacts. Thin films with nanoscale thickness gradients that are rapidly deposited in open air for combinatorial and high-throughput (CHT) studies are presented. Atmospheric pressure spatial atomic layer deposition reactor heads are used to produce spatially varying chemical vapor deposition rates on the order of angstroms per second. ZnO and Al2O3 films are printed with nm-scale thickness gradients in as little as 45 s and CHT analysis of a metal-insulator-metal diode and perovskite solar cell is performed. By testing 360 Pt/Al2O3/Al diodes with 18 different Al2O3 thicknesses on one wafer, a thicker insulator layer (?7.0 nm) is identified for optimal diode performance than reported previously. Al2O3 thin film encapsulation is deposited by atmospheric pressure chemical vapor deposition (AP-CVD) on a perovskite solar cell stack for the first time and a convolutional neural network is developed to analyze the perovskite stability. The rapid nature of AP-CVD enables thicker films to be deposited at a higher temperature than is practical with conventional methods. The CHT analysis shows enhanced stability for 70 nm encapsulation films. |
URI: |
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202103271 https://dlib.phenikaa-uni.edu.vn/handle/PNK/2819 |
Appears in Collections |
Bài báo khoa học |
ABSTRACTS VIEWS
30
FULLTEXT VIEWS
0
Files in This Item:
There are no files associated with this item.