Thông tin tài liệu


Nhan đề : TiO2 Inverse Opals Modified by Ag Nanoparticles: A Synergic Effect of Enhanced Visible-Light Absorption and Efficient Charge Separation for Visible-Light Photocatalysis
Tác giả : Thanh-Hiep Thi Le
Thanh-Trang Bui
Hao Van Bui
Van-Duong Dao
Loan Le Thi Ngoc
Năm xuất bản : 2021
Nhà xuất bản : Catalysts
Tóm tắt : This work reports on the synthesis, characterization, and photocatalytic performance of the TiO2 inverse opal nanostructure (IP-TiO2) and the IP-TiO2 modified by Ag nanoparticles (Ag@IP-TiO2). The IP-TiO2 is fabricated using polystyrene spheres as the template and TiCl4 as the precursor, and the Ag@IP-TiO2 is realized by photoreduction method. The morphological, structural, and optical properties of the materials are investigated by scanning electron microscopy, X-ray diffraction, ultraviolet–visible (UV-VIS) absorption spectroscopy, and photoluminescence spectroscopy. Their photocatalytic performances are studied by the degradation of rifampicin antibiotic under the visible-light irradiation generated by an LED lamp. The results demonstrate that the IP-TiO2 is composed of mesopores arranged in the honeycomb structure and strongly absorbs visible light in the wavelength range of 400–500 nm. This facilitates the visible-light catalytic activity of IP-TiO2, which is further enhanced by the surface modification by Ag nanoparticles. Our studies on the UV-VIS absorption and photoluminescent properties of the materials reveal that the presence of Ag nanoparticles not only enhances the visible-light absorption of IP-TiO2, but also reduces the recombination of photogenerated electrons and holes. These two factors create a synergic effect that causes the enhanced photocatalytic performance of Ag@IP-TiO2.
URI: https://www.mdpi.com/2073-4344/11/7/761
https://dlib.phenikaa-uni.edu.vn/handle/PNK/2845
Bộ sưu tậpBài báo khoa học
XEM MÔ TẢ

42

XEM TOÀN VĂN

1

Danh sách tệp tin đính kèm:
Ảnh bìa
  • catalysts-11-00761.pdf
      Restricted Access
    • Dung lượng : 3,28 MB

    • Định dạng : Adobe PDF