Thông tin tài liệu


Nhan đề : 
Deep Learning for the Inverse Design of Mid-Infrared Graphene Plasmons
Tác giả : 
Phan, Anh D.
Nguyen, Cuong V.
Pham, T. Linh
Tran, V. Huynh
Vu, D. Lam
Le, Anh-Tuan
Wakabayashi, Katsunori
Năm xuất bản : 
2020
Nhà xuất bản : 
MDPI
Tóm tắt : 
We theoretically investigate the plasmonic properties of mid-infrared graphene-based metamaterials and apply deep learning of a neural network for the inverse design. These artificial structures have square periodic arrays of graphene plasmonic resonators deposited on dielectric thin films. Optical spectra vary significantly with changes in structural parameters. To validate our theoretical approach, we carry out finite difference time domain simulations and compare computational results with theoretical calculations. Quantitatively good agreements among theoretical predictions, simulations, and previous experiments allow us to employ this proposed theoretical model to generate reliable data for training and testing deep neural networks. By merging the pre-trained neural network with the inverse network, we implement calculations for inverse design of the graphene-based metameterials. We also discuss the limitation of the data-driven approach.
URI: 
https://dlib.phenikaa-uni.edu.vn/handle/PNK/403
Bộ sưu tập
Bài báo khoa học
XEM MÔ TẢ

26

XEM TOÀN VĂN

0

Danh sách tệp tin đính kèm:

Ảnh bìa
  • crystals-10-00125-v2.pdf
      Restricted Access
    • Dung lượng : 833,51 kB

    • Định dạng : Adobe PDF