Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorElsisi, M.-
dc.contributor.authorMinh, Quang Tran-
dc.contributor.authorVu, Thi Lien-
dc.contributor.authorNguyen, Thi Thanh Nga-
dc.date.accessioned2022-05-05T07:26:18Z-
dc.date.available2022-05-05T07:26:18Z-
dc.date.issued2022-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-92574-1_15-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/5753-
dc.description.abstractManaging procedure for charging and discharging battery system plays an essential contributor in improving the performance of energy storage system for example increment of utilizing batteries. This paper aims to develop a new hybrid genetic algorithm-based proportional integral (GA-based PI) controller with an adaptive neuro-fuzzy inference system (ANFIS) for the charging balance of batteries. The dataset is generated by using the GA-based PI controller, then a training strategy is introduced for the ANFIS controller. The proposed approach is evaluated by the GA-based PI controller and the PI controller based on Ziegler Nichols methodvi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectANFIS-
dc.subjectGenetic algorithm (GA)
dc.titleAdaptive Energy Management in Microgrid Based on New Training Strategy for ANFISvi
dc.typeBài tríchvi
eperson.identifier.doihttps://doi.org/10.1007/978-3-030-92574-1_15-
Appears in Collections
Bài báo khoa học

Files in This Item:

There are no files associated with this item.