Item Infomation
Title: |
Unraveling the Roles of Morphology and Steric Hindrance on Electrochemical Analytical Performance of α-Fe2O3 Nanostructures-Based Nanosensors towards Chloramphenicol Antibiotic in Shrimp Samples |
Authors: |
Nguyen, Ngoc Huyen Ngo, Xuan Dinh Mai, Quan Doan |
Issue Date: |
2022 |
Publisher: |
IOP Publishing |
Abstract: |
In this work, we investigated the effect of morphology on the analytical performance of α-Fe2O3 nanostructures-based electrochemical sensors toward chloramphenicol (CAP) antibiotic using three designed morphologies including α-Fe2O3 nano-tube (α-Fe2O3-T), α-Fe2O3 nano-rice (α-Fe2O3-R), and α-Fe2O3 nano-plate (α-Fe2O3-P). Among these morphologies, α-Fe2O3-T displayed an outstanding electrochemical activity owing to the unique hollow structure and large specific surface area. However, due to the small pores size, α-Fe2O3-T showed the high steric hindrance (SD) effect towards an antibiotic with complex molecular structure, as CAP, leading to a significant decrease of their CAP electrochemical sensing performance. The CAP analytical performance of α-Fe2O3-R was highest in investigated morphologies owing to a high density of exposed Fe3+ as well as less SD effect towards CAP molecules. Under optimized conditions, α-Fe2O3-R-based CAP electrochemical sensor reached an electrochemical sensitivity of 0.92 μA μM−1 cm−2 with a LOD of 0.11 μM in the detection range from 2.5–50 μM. In addition, all these α-Fe2O3 nanostructures-based electrochemical sensors had excellent stability and high anti-interference ability for CAP analysis in a complex food matrix, as shrimp sample. This study provides valuable insights into the morphology-dependent sensing properties of α-Fe2O3 nanostructures towards antibiotics, which is helpful to the design of novel α-Fe2O3-based electrochemical nanosensors. |
URI: |
https://iopscience.iop.org/article/10.1149/1945-7111/ac4db0 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5884 |
Appears in Collections |
Bài báo khoa học |
ABSTRACTS VIEWS
25
FULLTEXT VIEWS
0
Files in This Item:
There are no files associated with this item.