Thông tin tài liệu


Nhan đề : 
Multiobjective Optimization of Surface Roughness and Tool Wear in High-Speed Milling of AA6061 by Machine Learning and NSGA-II
Tác giả : 
Anh-Tu Nguyen
Van-Hai Nguyen
Tien-Thinh Le
Năm xuất bản : 
2022
Nhà xuất bản : 
Hindawi
Tóm tắt : 
This work addresses the prediction and optimization of average surface roughness (Ra) and maximum flank wear (Vbmax) of 6061 aluminum alloy during high-speed milling. The investigation was done using a DMU 50 CNC 5-axis machine with Ultracut FX 6090 fluid. Four factors were examined: the table feed rate, cutting speed, depth of cut, and cutting length. Three levels of each factor were examined to conduct 81 experiment runs. The response parameters in these experiments were measurements of Ra and Vbmax.
URI: 
https://www.hindawi.com/journals/amse/2022/5406570/
https://dlib.phenikaa-uni.edu.vn/handle/PNK/5977
Bộ sưu tập
Bài báo khoa học
XEM MÔ TẢ

20

XEM TOÀN VĂN

0

Danh sách tệp tin đính kèm:

Hiện tại không có tệp tin đính kèm tới tài liệu.