Search
Author
- Carlos, Alegría (2)
- David, Orden (2)
Subject
- n=|R|+|B| (1)
- O be a set of k≥2 lines (1)
- O(nlogn) time and O(n... (1)
- O-convex hull of R con... (1)
- next >
Date issued
- 2022 (2)
Has File(s)
- true (2)
Search Results
We explore the separability of point sets in the plane by a restricted-orientation convex hull, which is an orientation-dependent, possibly disconnected, and non-convex enclosing shape that generalizes the convex hull. Let R and B be two disjoint sets of red and blue points in the plane, and O be a set of k≥2 lines passing through the origin. We study the problem of computing the set of orientations of the lines of O for which the O-convex hull of R contains no points of B. For k=2 orthogonal lines we have the rectilinear convex hull. In optimal O(nlogn)
time and O(n) space, n=|R|+|B|, we compute the set of rotation angles such that, after simultaneously rotating the lines of O around the origin in the same direction, the rectilinear convex hull of R contains no points of B. |
We explore the separability of point sets in the plane by a restricted-orientation convex hull, which is an orientation-dependent, possibly disconnected, and non-convex enclosing shape that generalizes the convex hull. Let R and B be two disjoint sets of red and blue points in the plane, and O be a set of k≥2 lines passing through the origin. We study the problem of computing the set of orientations of the lines of O for which the O-convex hull of R contains no points of B. For k=2 orthogonal lines we have the rectilinear convex hull. |