Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorTao, Zhou-
dc.contributor.authorDeng-Ping, Fan-
dc.contributor.authorGeng, Chen-
dc.date.accessioned2023-03-30T02:51:02Z-
dc.date.available2023-03-30T02:51:02Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s41095-022-0268-6-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7314-
dc.descriptionCC BYvi
dc.description.abstractSalient object detection (SOD) in RGB and depth images has attracted increasing research interest. Existing RGB-D SOD models usually adopt fusion strategies to learn a shared representation from RGB and depth modalities, while few methods explicitly consider how to preserve modality-specific characteristics. In this study, we propose a novel framework, the specificity-preserving network (SPNet), which improves SOD performance by exploring both the shared information and modality-specific properties.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectSODvi
dc.subjectRGBvi
dc.titleSpecificity-preserving RGB-D saliency detectionvi
dc.typeBookvi
Appears in Collections
OER - Công nghệ thông tin

Files in This Item:

Thumbnail
  • Specificity-preserving RGB-D saliency detection-2023.pdf
      Restricted Access
    • Size : 7,59 MB

    • Format : Adobe PDF