Thông tin tài liệu
 
| Nhan đề : | 
| A self-training automatic infant-cry detector | 
| Tác giả : | 
| Gianpaolo, Coro Serena, Bardelli Armando, Cuttano | 
| Năm xuất bản : | 
| 2023 | 
| Nhà xuất bản : | 
| Springer | 
| Tóm tắt : | 
| Infant cry is one of the first distinctive and informative life signals observed after birth. Neonatologists and automatic assistive systems can analyse infant cry to early-detect pathologies. These analyses extensively use reference expert-curated databases containing annotated infant-cry audio samples. However, these databases are not publicly accessible because of their sensitive data. Moreover, the recorded data can under-represent specific phenomena or the operational conditions required by other medical teams. Additionally, building these databases requires significant investments that few hospitals can afford. This paper describes an open-source workflow for infant-cry detection, which identifies audio segments containing high-quality infant-cry samples with no other overlapping audio events (e.g. machine noise or adult speech). | 
| Mô tả: | 
| CC BY | 
| URI: | 
| https://link.springer.com/article/10.1007/s00521-022-08129-w https://dlib.phenikaa-uni.edu.vn/handle/PNK/7333 | 
| Bộ sưu tập | 
| OER - Công nghệ thông tin | 
 XEM MÔ TẢ
192
 XEM TOÀN VĂN
128
Danh sách tệp tin đính kèm:
