Thông tin tài liệu
| Nhan đề : |
| A self-training automatic infant-cry detector |
| Tác giả : |
| Gianpaolo, Coro Serena, Bardelli Armando, Cuttano |
| Năm xuất bản : |
| 2023 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| Infant cry is one of the first distinctive and informative life signals observed after birth. Neonatologists and automatic assistive systems can analyse infant cry to early-detect pathologies. These analyses extensively use reference expert-curated databases containing annotated infant-cry audio samples. However, these databases are not publicly accessible because of their sensitive data. Moreover, the recorded data can under-represent specific phenomena or the operational conditions required by other medical teams. Additionally, building these databases requires significant investments that few hospitals can afford. This paper describes an open-source workflow for infant-cry detection, which identifies audio segments containing high-quality infant-cry samples with no other overlapping audio events (e.g. machine noise or adult speech). |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s00521-022-08129-w https://dlib.phenikaa-uni.edu.vn/handle/PNK/7333 |
| Bộ sưu tập |
| OER - Công nghệ thông tin |
XEM MÔ TẢ
192
XEM TOÀN VĂN
128
Danh sách tệp tin đính kèm:
