Thông tin tài liệu


Nhan đề : 
Utilizing fog computing and explainable deep learning techniques for gestational diabetes prediction
Tác giả : 
Nora, El-Rashidy
Nesma E., ElSayed
Amir, El-Ghamry
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Gestational diabetes mellitus (GDM) is one of the pregnancy complications that poses a significant risk on mothers and babies as well. GDM usually diagnosed at 22–26 of gestation. However, the early prediction is desirable as it may contribute to decrease the risk. The continuous monitoring for mother’s vital signs helps in predicting any deterioration during pregnancy. The originality of this paper is to provide comprehensive framework for pregnancy women monitoring. The proposed Data Replacement and Prediction Framework consists of three layers which are: (i) IoT Layer, (ii) Fog Layer, and (iii) Cloud Layer.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s00521-022-08007-5
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7358
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

25

XEM TOÀN VĂN

600

Danh sách tệp tin đính kèm: