Item Infomation


Title: MLMRS-Net Electroencephalography (EEG) motion artifacts removal using a multi-layer multi-resolution spatially pooled 1D signal reconstruction network
Authors: Sakib, Mahmud
Md Shafayet, Hossain
Muhammad E. H., Chowdhury
Issue Date: 2023
Publisher: Springer
Abstract: Electroencephalogram (EEG) signals suffer substantially from motion artifacts when recorded in ambulatory settings utilizing wearable sensors. Because the diagnosis of many neurological diseases is heavily reliant on clean EEG data, it is critical to eliminate motion artifacts from motion-corrupted EEG signals using reliable and robust algorithms. Although a few deep learning-based models have been proposed for the removal of ocular, muscle, and cardiac artifacts from EEG data to the best of our knowledge, there is no attempt has been made in removing motion artifacts from motion-corrupted EEG signals: In this paper, a novel 1D convolutional neural network (CNN) called multi-layer multi-resolution spatially pooled (MLMRS) network for signal reconstruction is proposed for EEG motion artifact removal.
Description: CC BY
URI: https://link.springer.com/article/10.1007/s00521-022-08111-6
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7378
Appears in CollectionsOER - Công nghệ thông tin
ABSTRACTS VIEWS

81

FULLTEXT VIEWS

34

Files in This Item: