Thông tin tài liệu
Nhan đề : |
An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time Video Enhancement |
Tác giả : |
Dario, Fuoli Zhiwu, Huang Danda Pani, Paudel |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain. In practice, these challenges are often coupled with the lack of example pairs, which inhibits the application of supervised learning strategies. To address these challenges, we propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples. In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s11263-022-01735-0 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7394 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
22
XEM TOÀN VĂN
54
Danh sách tệp tin đính kèm: