Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndrew, Gibbs-
dc.contributor.authorDavid, Hewett-
dc.contributor.authorAndrea, Moiola-
dc.date.accessioned2023-03-31T08:26:20Z-
dc.date.available2023-03-31T08:26:20Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11075-022-01378-9-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7397-
dc.descriptionCC BYvi
dc.description.abstractFor the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectregular integralsvi
dc.subjectcomposite barycentre rulevi
dc.titleNumerical quadrature for singular integrals on fractalsvi
dc.typeBookvi
Appears in Collections
OER - Công nghệ thông tin

Files in This Item: