Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorHyeongbok, Kim-
dc.contributor.authorZhiqi, Pang-
dc.contributor.authorLingling, Zhao-
dc.date.accessioned2023-03-31T08:44:18Z-
dc.date.available2023-03-31T08:44:18Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s11042-022-13917-6-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7399-
dc.descriptionCC BYvi
dc.description.abstractPrivacy protection in the computer vision field has attracted increasing attention. Generative adversarial network-based methods have been explored for identity anonymization, but they do not take into consideration semantic information of images, which may result in unrealistic or flawed facial results. In this paper, we propose a Semantic-aware De-identification Generative Adversarial Network (SDGAN) model for identity anonymization. To retain the facial expression effectively, we extract the facial semantic image using the edge-aware graph representation network to constraint the position, shape and relationship of generated facial key features.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectSDGANvi
dc.subjectincreasing attentionvi
dc.titleSemantic-aware deidentification generative adversarial networks for identity anonymizationvi
dc.typeBookvi
Bộ sưu tập
OER - Công nghệ thông tin

Danh sách tệp tin đính kèm: