Thông tin tài liệu
Thông tin siêu dữ liệu biểu ghi
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Hyeongbok, Kim | - |
| dc.contributor.author | Zhiqi, Pang | - |
| dc.contributor.author | Lingling, Zhao | - |
| dc.date.accessioned | 2023-03-31T08:44:18Z | - |
| dc.date.available | 2023-03-31T08:44:18Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.uri | https://link.springer.com/article/10.1007/s11042-022-13917-6 | - |
| dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7399 | - |
| dc.description | CC BY | vi |
| dc.description.abstract | Privacy protection in the computer vision field has attracted increasing attention. Generative adversarial network-based methods have been explored for identity anonymization, but they do not take into consideration semantic information of images, which may result in unrealistic or flawed facial results. In this paper, we propose a Semantic-aware De-identification Generative Adversarial Network (SDGAN) model for identity anonymization. To retain the facial expression effectively, we extract the facial semantic image using the edge-aware graph representation network to constraint the position, shape and relationship of generated facial key features. | vi |
| dc.language.iso | en | vi |
| dc.publisher | Springer | vi |
| dc.subject | SDGAN | vi |
| dc.subject | increasing attention | vi |
| dc.title | Semantic-aware deidentification generative adversarial networks for identity anonymization | vi |
| dc.type | Book | vi |
| Bộ sưu tập | ||
| OER - Công nghệ thông tin | ||
Danh sách tệp tin đính kèm:

