Item Infomation


Title: 
Pareto robust optimization on Euclidean vector spaces
Authors: 
Dennis, Adelhütte
Christian, Biefel
Martina, Kuchlbauer
Issue Date: 
2022
Publisher: 
Springer
Abstract: 
Pareto efficiency for robust linear programs was introduced by Iancu and Trichakis in [Manage Sci 60(1):130–147, 9]. We generalize their approach and theoretical results to robust optimization problems in Euclidean spaces with affine uncertainty. Additionally, we demonstrate the value of this approach in an exemplary manner in the area of robust semidefinite programming (SDP). In particular, we prove that computing a Pareto robustly optimal solution for a robust SDP is tractable and illustrate the benefit of such solutions at the example of the maximal eigenvalue problem. Furthermore, we modify the famous algorithm of Goemans and Williamson [Assoc Comput Mach 42(6):1115–1145, 8] in order to compute cuts for the robust max-cut problem that yield an improved approximation guarantee in non-worst-case scenarios.
Description: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s11590-022-01929-y
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7406
Appears in Collections
OER - Khoa học Tự nhiên
ABSTRACTS VIEWS

8

FULLTEXT VIEWS

34

Files in This Item:

Thumbnail
  • Pareto robust optimization on Euclidean vector spaces-2023.pdf
      Restricted Access
    • Size : 1,66 MB

    • Format : Adobe PDF