Item Infomation
| Title: |
| Torsion Pairs and Ringel Duality for Schur Algebras |
| Authors: |
| Karin, Erdmann Stacey, Law |
| Issue Date: |
| 2021 |
| Publisher: |
| Springer |
| Abstract: |
| Let A be a finite-dimensional algebra over an algebraically closed field. We use a functorial approach involving torsion pairs to construct embeddings of endomorphism algebras of basic projective A–modules P into those of the torsion submodules of P. As an application, we show that blocks of both the classical and quantum Schur algebras S(2,r) and Sq(2,r) in characteristic p > 0 are Morita equivalent as quasi-hereditary algebras to their Ringel duals if they contain 2pk simple modules for some k. |
| Description: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s10468-021-10098-y https://dlib.phenikaa-uni.edu.vn/handle/PNK/7418 |
| Appears in Collections |
| OER - Khoa học Tự nhiên |
ABSTRACTS VIEWS
120
FULLTEXT VIEWS
48
Files in This Item:
