Thông tin tài liệu
Thông tin siêu dữ liệu biểu ghi
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Jürgen, Berndt | - |
| dc.date.accessioned | 2023-04-03T09:31:54Z | - |
| dc.date.available | 2023-04-03T09:31:54Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.uri | https://link.springer.com/article/10.1007/s10231-022-01254-2 | - |
| dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7456 | - |
| dc.description | CC BY | vi |
| dc.description.abstract | This paper deals with a limiting case motivated by contact geometry. The limiting case of a tensorial characterization of contact hypersurfaces in Kähler manifolds leads to Hopf hypersurfaces whose maximal complex subbundle of the tangent bundle is integrable. It is known that in non-flat complex space forms and in complex quadrics such real hypersurfaces do not exist, but the existence problem in other irreducible Kähler manifolds is open. In this paper we construct explicitly a one-parameter family of homogeneous Hopf hypersurfaces, whose maximal complex subbundle of the tangent bundle is integrable, in a Hermitian symmetric space of non-compact type and rank two. | vi |
| dc.language.iso | en | vi |
| dc.publisher | Springer | vi |
| dc.subject | contact geometry | vi |
| dc.subject | tensorial characterization of contact hypersurfaces | vi |
| dc.title | Foliated Hopf hypersurfaces in complex hyperbolic quadrics | vi |
| dc.type | Book | vi |
| Bộ sưu tập | ||
| OER - Khoa học Tự nhiên | ||
Danh sách tệp tin đính kèm:

