Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorJürgen, Berndt-
dc.date.accessioned2023-04-03T09:31:54Z-
dc.date.available2023-04-03T09:31:54Z-
dc.date.issued2022-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10231-022-01254-2-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7456-
dc.descriptionCC BYvi
dc.description.abstractThis paper deals with a limiting case motivated by contact geometry. The limiting case of a tensorial characterization of contact hypersurfaces in Kähler manifolds leads to Hopf hypersurfaces whose maximal complex subbundle of the tangent bundle is integrable. It is known that in non-flat complex space forms and in complex quadrics such real hypersurfaces do not exist, but the existence problem in other irreducible Kähler manifolds is open. In this paper we construct explicitly a one-parameter family of homogeneous Hopf hypersurfaces, whose maximal complex subbundle of the tangent bundle is integrable, in a Hermitian symmetric space of non-compact type and rank two.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectcontact geometryvi
dc.subjecttensorial characterization of contact hypersurfacesvi
dc.titleFoliated Hopf hypersurfaces in complex hyperbolic quadricsvi
dc.typeBookvi
Bộ sưu tập
OER - Khoa học Tự nhiên

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Foliated Hopf hypersurfaces in complex hyperbolic quadrics-2022.pdf
      Restricted Access
    • Dung lượng : 2,54 MB

    • Định dạng : Adobe PDF