Thông tin tài liệu
Nhan đề : |
Equal sums in random sets and the concentration of divisors |
Tác giả : |
Kevin, Ford Ben, Green Dimitris, Koukoulopoulos |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
We study the extent to which divisors of a typical integer n are concentrated. In particular, defining Δ(n):=maxt#{d|n,logd∈[t,t+1]}, we show that Δ(n)⩾(loglogn)0.35332277… for almost all n, a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s00222-022-01177-y https://dlib.phenikaa-uni.edu.vn/handle/PNK/7492 |
Bộ sưu tập |
OER - Khoa học Tự nhiên |
XEM MÔ TẢ
28
XEM TOÀN VĂN
32
Danh sách tệp tin đính kèm: