Thông tin tài liệu
| Nhan đề : |
| Equal sums in random sets and the concentration of divisors |
| Tác giả : |
| Kevin, Ford Ben, Green Dimitris, Koukoulopoulos |
| Năm xuất bản : |
| 2023 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| We study the extent to which divisors of a typical integer n are concentrated. In particular, defining Δ(n):=maxt#{d|n,logd∈[t,t+1]}, we show that Δ(n)⩾(loglogn)0.35332277… for almost all n, a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s00222-022-01177-y https://dlib.phenikaa-uni.edu.vn/handle/PNK/7492 |
| Bộ sưu tập |
| OER - Khoa học Tự nhiên |
XEM MÔ TẢ
133
XEM TOÀN VĂN
72
Danh sách tệp tin đính kèm:
