Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorLipeng, Duan-
dc.contributor.authorMonica, Musso-
dc.contributor.authorSuting, Wei-
dc.date.accessioned2023-04-05T07:35:15Z-
dc.date.available2023-04-05T07:35:15Z-
dc.date.issued2023-
dc.identifier.otherhttps://link.springer.com/article/10.1007/s00030-023-00845-z-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7577-
dc.descriptionCC BYvi
dc.description.abstractWe consider the prescribed scalar curvature problem on SNΔSNv−N(N−2)2v+K~(y)vN+2N−2=0 on SN,v>0in SN, under the assumptions that the scalar curvature K~ is rotationally symmetric, and has a positive local maximum point between the poles. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large. These solutions are invariant under some non-trivial sub-group of O(3) obtained doubling the equatorial. We use the finite dimensional Lyapunov–Schmidt reduction method.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.titleDoubling the equatorial for the prescribed scalar curvature problem onvi
dc.typeBookvi
Appears in Collections
OER - Khoa học Tự nhiên

Files in This Item: