Thông tin tài liệu
| Nhan đề : |
| Detection and explanation of anomalies in healthcare data |
| Tác giả : |
| Durgesh, Samariya Jiangang, Ma Sunil, Aryal |
| Năm xuất bản : |
| 2023 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| The growth of databases in the healthcare domain opens multiple doors for machine learning and artificial intelligence technology. Many medical devices are available in the medical field; however, medical errors remain a severe challenge. Different algorithms are developed to identify and solve medical errors, such as detecting anomalous readings, anomalous health conditions of a patient, etc. However, they fail to answer why those entries are considered an anomaly. This research gap leads to an outlying aspect mining problem. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s13755-023-00221-2 https://dlib.phenikaa-uni.edu.vn/handle/PNK/7670 |
| Bộ sưu tập |
| OER - Công nghệ thông tin |
XEM MÔ TẢ
110
XEM TOÀN VĂN
94
Danh sách tệp tin đính kèm:
