Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorDurgesh, Samariya-
dc.contributor.authorJiangang, Ma-
dc.contributor.authorSunil, Aryal-
dc.date.accessioned2023-04-07T07:28:24Z-
dc.date.available2023-04-07T07:28:24Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s13755-023-00221-2-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7670-
dc.descriptionCC BYvi
dc.description.abstractThe growth of databases in the healthcare domain opens multiple doors for machine learning and artificial intelligence technology. Many medical devices are available in the medical field; however, medical errors remain a severe challenge. Different algorithms are developed to identify and solve medical errors, such as detecting anomalous readings, anomalous health conditions of a patient, etc. However, they fail to answer why those entries are considered an anomaly. This research gap leads to an outlying aspect mining problem.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectgrowth of databasesvi
dc.subjecthealthcare domain opens multiple doorsvi
dc.titleDetection and explanation of anomalies in healthcare datavi
dc.typeBookvi
Bộ sưu tập
OER - Công nghệ thông tin

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Detection and explanation of anomalies in healthcare data-2023.pdf
      Restricted Access
    • Dung lượng : 8,68 MB

    • Định dạng : Adobe PDF

  • Ảnh bìa
  • Detection and explanation of anomalies in healthcare data-2023.pdf
      Restricted Access
    • Dung lượng : 8,68 MB

    • Định dạng : Adobe PDF