Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorShuxi, Wang-
dc.contributor.authorJiahui, Pan-
dc.contributor.authorBinyuan, Huang-
dc.date.accessioned2023-04-07T08:01:51Z-
dc.date.available2023-04-07T08:01:51Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1007/s00138-023-01386-2-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7673-
dc.descriptionCC BYvi
dc.description.abstractThanks to the development of depth sensors and pose estimation algorithms, skeleton-based action recognition has become prevalent in the computer vision community. Most of the existing works are based on spatio-temporal graph convolutional network frameworks, which learn and treat all spatial or temporal features equally, ignoring the interaction with channel dimension to explore different contributions of different spatio-temporal patterns along the channel direction and thus losing the ability to distinguish confusing actions with subtle differences. In this paper, an interactional channel excitation (ICE) module is proposed to explore discriminative spatio-temporal features of actions by adaptively recalibrating channel-wise pattern maps.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectpose estimation algorithmsvi
dc.subjectconvolutional network frameworksvi
dc.titleICE-GCN: An interactional channel excitation-enhanced graph convolutional network for skeleton-based action recognitionvi
dc.typeBookvi
Bộ sưu tập
OER - Công nghệ thông tin

Danh sách tệp tin đính kèm: