Thông tin tài liệu


Nhan đề : 
Unsupervised relational inference using masked reconstruction
Tác giả : 
Gerrit, Großmann
Julian, Zimmerlin
Michael, Backenköhler
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Stochastic dynamical systems in which local interactions give rise to complex emerging phenomena are ubiquitous in nature and society. This work explores the problem of inferring the unknown interaction structure (represented as a graph) of such a system from measurements of its constituent agents or individual components (represented as nodes). We consider a setting where the underlying dynamical model is unknown and where different measurements (i.e., snapshots) may be independent (e.g., may stem from different experiments).
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s41109-023-00542-x
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7712
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

29

XEM TOÀN VĂN

80

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Unsupervised relational inference using masked reconstruction-2023.pdf
      Restricted Access
    • Dung lượng : 2,34 MB

    • Định dạng : Adobe PDF