Thông tin tài liệu
Thông tin siêu dữ liệu biểu ghi
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Zhan, Gao | - |
| dc.contributor.author | M. Hashem, Pesaran | - |
| dc.date.accessioned | 2023-04-11T02:04:41Z | - |
| dc.date.available | 2023-04-11T02:04:41Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.govdoc | https://link.springer.com/article/10.1007/s00181-023-02402-0 | - |
| dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7738 | - |
| dc.description | CC BY | vi |
| dc.description.abstract | This paper proposes a linear categorical random coefficient model, in which the random coefficients follow parametric categorical distributions. The distributional parameters are identified based on a linear recurrence structure of moments of the random coefficients. A generalized method of moments estimation procedure is proposed, also employed by Peter Schmidt and his coauthors to address heterogeneity in time effects in panel data models. Using Monte Carlo simulations, we find that moments of the random coefficients can be estimated reasonably accurately, but large samples are required for the estimation of the parameters of the underlying categorical distribution. | vi |
| dc.language.iso | en | vi |
| dc.publisher | Springer | vi |
| dc.subject | categorical random coefficient models | vi |
| dc.title | Identification and estimation of categorical random coefficient models | vi |
| dc.type | Book | vi |
| Bộ sưu tập | ||
| OER - Kinh tế và Quản lý | ||
Danh sách tệp tin đính kèm:

