Thông tin tài liệu
Nhan đề : |
Identification and estimation of categorical random coefficient models |
Tác giả : |
Zhan, Gao M. Hashem, Pesaran |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
This paper proposes a linear categorical random coefficient model, in which the random coefficients follow parametric categorical distributions. The distributional parameters are identified based on a linear recurrence structure of moments of the random coefficients. A generalized method of moments estimation procedure is proposed, also employed by Peter Schmidt and his coauthors to address heterogeneity in time effects in panel data models. Using Monte Carlo simulations, we find that moments of the random coefficients can be estimated reasonably accurately, but large samples are required for the estimation of the parameters of the underlying categorical distribution. |
Mô tả: |
CC BY |
Gov't Doc # : |
https://link.springer.com/article/10.1007/s00181-023-02402-0 |
URI: |
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7738 |
Bộ sưu tập |
OER - Kinh tế và Quản lý |
XEM MÔ TẢ
25
XEM TOÀN VĂN
12
Danh sách tệp tin đính kèm: