Item Infomation
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Corinna, Rutschi | - |
dc.contributor.author | Nicholas, Berente | - |
dc.contributor.author | Frederick, Nwanganga | - |
dc.date.accessioned | 2023-04-13T08:27:20Z | - |
dc.date.available | 2023-04-13T08:27:20Z | - |
dc.date.issued | 2023 | - |
dc.identifier.govdoc | https://link.springer.com/article/10.1007/s10796-023-10388-4 | - |
dc.identifier.uri | https://dlib.phenikaa-uni.edu.vn/handle/PNK/7898 | - |
dc.description | CC BY | vi |
dc.description.abstract | Data sensitivity and domain specificity challenges arise in reuse of machine learning applications. We identify four types of machine learning applications based on different reuse strategies: generic, distinctive, selective, and exclusive. We conclude with lessons for developing and deploying machine learning applications. | vi |
dc.language.iso | en | vi |
dc.publisher | Springer | vi |
dc.subject | Data Sensitivity | vi |
dc.subject | Domain Specificity | vi |
dc.title | Data Sensitivity and Domain Specificity in Reuse of Machine Learning Applications | vi |
dc.type | Book | vi |
Appears in Collections | ||
OER - Kinh tế và Quản lý |
Files in This Item: