Item Infomation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorMax, Marian-
dc.contributor.authorJonas, Mursak-
dc.contributor.authorMarcel, Bartz-
dc.date.accessioned2023-04-14T08:09:14Z-
dc.date.available2023-04-14T08:09:14Z-
dc.date.issued2022-
dc.identifier.urihttps://link.springer.com/article/10.1007/s40544-022-0641-6-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/7953-
dc.descriptionCC BYvi
dc.description.abstractNon-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated (EHL) contacts. In this contribution, we demonstrate that machine learning (ML) and artificial intelligence (AI) approaches (support vector machines, Gaussian process regressions, and artificial neural networks) can predict relevant film parameters more efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically solvable proximity equations, respectively. For this purpose, we use data from EHL simulations based upon the full-system finite element (FE) solution and a Latin hypercube sampling.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectelastohydrodynamically lubricatedvi
dc.subjectfinite elementvi
dc.titlePredicting EHL film thickness parameters by machine learning approachesvi
dc.typeBookvi
Appears in Collections
OER - Kỹ thuật điện; Điện tử - Viễn thông

Files in This Item: