Thông tin tài liệu


Nhan đề : 
Predicting EHL film thickness parameters by machine learning approaches
Tác giả : 
Max, Marian
Jonas, Mursak
Marcel, Bartz
Năm xuất bản : 
2022
Nhà xuất bản : 
Springer
Tóm tắt : 
Non-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated (EHL) contacts. In this contribution, we demonstrate that machine learning (ML) and artificial intelligence (AI) approaches (support vector machines, Gaussian process regressions, and artificial neural networks) can predict relevant film parameters more efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically solvable proximity equations, respectively. For this purpose, we use data from EHL simulations based upon the full-system finite element (FE) solution and a Latin hypercube sampling.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s40544-022-0641-6
https://dlib.phenikaa-uni.edu.vn/handle/PNK/7953
Bộ sưu tập
OER - Kỹ thuật điện; Điện tử - Viễn thông
XEM MÔ TẢ

40

XEM TOÀN VĂN

72

Danh sách tệp tin đính kèm: