Item Infomation
Title: |
EBUNet: a fast and accurate semantic segmentation network with lightweight efficient bottleneck unit |
Authors: |
Siyuan, Shen Zhengjun, Zhai Guanfeng, Yu |
Issue Date: |
2023 |
Publisher: |
Springer |
Abstract: |
It has been difficult to achieve a suitable balance between effectiveness and efficiency in lightweight semantic segmentation networks in recent years. The goal of this work is to present an efficient and reliable semantic segmentation method called EBUNet, which is aimed at achieving a favorable trade-off between inference speed and prediction accuracy. Initially, we develop an Efficient Bottleneck Unit (EBU) that employs depth-wise convolution and depth-wise dilated convolution to obtain adequate features with moderate computation costs. Then, we developed a novel Image Partition Attention Module (IPAM), which divides feature maps into subregions and generates attention weights based on them. As a third step, we developed a novel lightweight attention decoder with which to retrieve spatial information effectively |
Description: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s40747-023-01054-y https://dlib.phenikaa-uni.edu.vn/handle/PNK/8000 |
Appears in Collections |
OER - Kỹ thuật điện; Điện tử - Viễn thông |
ABSTRACTS VIEWS
125
FULLTEXT VIEWS
74
Files in This Item: