Thông tin tài liệu


Nhan đề : 
General and patient-specific seizure classification using deep neural networks
Tác giả : 
Yasmin M., Massoud
Mennatallah, Abdelzaher
Levin, Kuhlmann
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Seizure prediction algorithms have been central in the field of data analysis for the improvement of epileptic patients’ lives. The most recent advancements of which include the use of deep neural networks to present an optimized, accurate seizure prediction system. This work puts forth deep learning methods to automate the process of epileptic seizure detection with electroencephalogram (EEG) signals as input; both a patient-specific and general approach are followed. EEG signals are time structure series motivating the use of sequence algorithms such as temporal convolutional neural networks (TCNNs), and long short-term memory networks. We then compare this methodology to other prior pre-implemented structures, including our previous work for seizure prediction using machine learning approaches support vector machine and random under-sampling boost.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s10470-023-02153-z
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8030
Bộ sưu tập
OER - Kỹ thuật điện; Điện tử - Viễn thông
XEM MÔ TẢ

50

XEM TOÀN VĂN

82

Danh sách tệp tin đính kèm: