Item Infomation
Title: |
Self-supervised zero-shot dehazing network based on dark channel prior |
Authors: |
Xinjie, Xiao Yuanhong, Ren Zhiwei, Li |
Issue Date: |
2023 |
Publisher: |
Springer |
Abstract: |
Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. |
Description: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s12200-023-00062-7 https://dlib.phenikaa-uni.edu.vn/handle/PNK/8046 |
Appears in Collections |
OER - Kỹ thuật điện; Điện tử - Viễn thông |
ABSTRACTS VIEWS
36
FULLTEXT VIEWS
46
Files in This Item: