Item Infomation


Title: 
RELAX: Representation Learning Explainability
Authors: 
Kristoffer K., Wickstrøm
Daniel J., Trosten
Sigurd, Løkse
Issue Date: 
2023
Publisher: 
Springer
Abstract: 
Despite the significant improvements that self-supervised representation learning has led to when learning from unlabeled data, no methods have been developed that explain what influences the learned representation. We address this need through our proposed approach, RELAX, which is the first approach for attribution-based explanations of representations. Our approach can also model the uncertainty in its explanations, which is essential to produce trustworthy explanations. RELAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself, providing intuitive explanations that significantly outperform the gradient-based baselines.
Description: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s11263-023-01773-2
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8254
Appears in Collections
OER - Công nghệ thông tin
ABSTRACTS VIEWS

19

FULLTEXT VIEWS

6

Files in This Item:

Thumbnail
  • RELAX Representation Learning Explainability-2023.pdf
      Restricted Access
    • Size : 7,85 MB

    • Format : Adobe PDF