Thông tin tài liệu
| Nhan đề : |
| Emotion classification of Indonesian Tweets using Bidirectional LSTM |
| Tác giả : |
| Aaron, Glenn Phillip, LaCasse Bruce, Cox |
| Năm xuất bản : |
| 2023 |
| Nhà xuất bản : |
| Springer |
| Tóm tắt : |
| Emotion classification can be a powerful tool to derive narratives from social media data. Traditional machine learning models that perform emotion classification on Indonesian Twitter data exist but rely on closed-source features. Recurrent neural networks can meet or exceed the performance of state-of-the-art traditional machine learning techniques using exclusively open-source data and models. Specifically, these results show that recurrent neural network variants can produce more than an 8% gain in accuracy in comparison with logistic regression and SVM techniques and a 15% gain over random forest when using FastText embeddings. |
| Mô tả: |
| CC BY |
| URI: |
| https://link.springer.com/article/10.1007/s00521-022-08186-1 https://dlib.phenikaa-uni.edu.vn/handle/PNK/8273 |
| Bộ sưu tập |
| OER - Công nghệ thông tin |
XEM MÔ TẢ
123
XEM TOÀN VĂN
62
Danh sách tệp tin đính kèm:
