Thông tin tài liệu


Nhan đề : 
Emotion classification of Indonesian Tweets using Bidirectional LSTM
Tác giả : 
Aaron, Glenn
Phillip, LaCasse
Bruce, Cox
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
Emotion classification can be a powerful tool to derive narratives from social media data. Traditional machine learning models that perform emotion classification on Indonesian Twitter data exist but rely on closed-source features. Recurrent neural networks can meet or exceed the performance of state-of-the-art traditional machine learning techniques using exclusively open-source data and models. Specifically, these results show that recurrent neural network variants can produce more than an 8% gain in accuracy in comparison with logistic regression and SVM techniques and a 15% gain over random forest when using FastText embeddings.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s00521-022-08186-1
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8273
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

25

XEM TOÀN VĂN

38

Danh sách tệp tin đính kèm: