Thông tin tài liệu


Nhan đề : 
Image forgery detection a survey of recent deep-learning approaches
Tác giả : 
Marcello, Zanardelli
Fabrizio, Guerrini
Riccardo, Leonardi
Năm xuất bản : 
2022
Nhà xuất bản : 
Springer
Tóm tắt : 
In the last years, due to the availability and easy of use of image editing tools, a large amount of fake and altered images have been produced and spread through the media and the Web. A lot of different approaches have been proposed in order to assess the authenticity of an image and in some cases to localize the altered (forged) areas. In this paper, we conduct a survey of some of the most recent image forgery detection methods that are specifically designed upon Deep Learning (DL) techniques, focusing on commonly found copy-move and splicing attacks. DeepFake generated content is also addressed insofar as its application is aimed at images, achieving the same effect as splicing. This survey is especially timely because deep learning powered techniques appear to be the most relevant right now, since they give the best overall performances on the available benchmark datasets.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s11042-022-13797-w
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8330
Bộ sưu tập
OER - Công nghệ thông tin
XEM MÔ TẢ

66

XEM TOÀN VĂN

202

Danh sách tệp tin đính kèm: