Item Infomation
Title: |
A modified Adam algorithm for deep neural network optimization |
Authors: |
Mohamed, Reyad Amany M., Sarhan M., Arafa |
Issue Date: |
2023 |
Publisher: |
Springer |
Abstract: |
Deep Neural Networks (DNNs) are widely regarded as the most effective learning tool for dealing with large datasets, and they have been successfully used in thousands of applications in a variety of fields. Based on these large datasets, they are trained to learn the relationships between various variables. The adaptive moment estimation (Adam) algorithm, a highly efficient adaptive optimization algorithm, is widely used as a learning algorithm in various fields for training DNN models. However, it needs to improve its generalization performance, especially when training with large-scale datasets. Therefore, in this paper, we propose HN Adam, a modified version of the Adam Algorithm, to improve its accuracy and convergence speed. The HN_Adam algorithm is modified by automatically adjusting the step size of the parameter updates over the training epochs. |
Description: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s00521-023-08568-z https://dlib.phenikaa-uni.edu.vn/handle/PNK/8343 |
Appears in Collections |
OER - Công nghệ thông tin |
ABSTRACTS VIEWS
113
FULLTEXT VIEWS
140
Files in This Item: