Thông tin tài liệu
Nhan đề : |
Dynamic parameterization of a modified SEIRD model to analyze and forecast the dynamics of COVID-19 outbreaks in the United States |
Tác giả : |
Orhun O., Davarci Emily Y., Yang Alexander, Viguerie |
Năm xuất bản : |
2023 |
Nhà xuất bản : |
Springer |
Tóm tắt : |
The rapid spread of the numerous outbreaks of the coronavirus disease 2019 (COVID-19) pandemic has fueled interest in mathematical models designed to understand and predict infectious disease spread, with the ultimate goal of contributing to the decision making of public health authorities. Here, we propose a computational pipeline that dynamically parameterizes a modified SEIRD (susceptible-exposed-infected-recovered-deceased) model using standard daily series of COVID-19 cases and deaths, along with isolated estimates of population-level seroprevalence. |
Mô tả: |
CC BY |
URI: |
https://link.springer.com/article/10.1007/s00366-023-01816-9 https://dlib.phenikaa-uni.edu.vn/handle/PNK/8344 |
Bộ sưu tập |
OER - Công nghệ thông tin |
XEM MÔ TẢ
34
XEM TOÀN VĂN
110
Danh sách tệp tin đính kèm: