Thông tin tài liệu


Nhan đề : 
Outlier detection in network revenue management
Tác giả : 
Nicola, Rennie
Catherine, Cleophas
Adam M., Sykulski
Năm xuất bản : 
2023
Nhà xuất bản : 
Springer
Tóm tắt : 
This paper presents an automated approach for providing ranked lists of outliers in observed demand to support analysts in network revenue management. Such network revenue management, e.g. for railway itineraries, needs accurate demand forecasts. However, demand outliers across or in parts of a network complicate accurate demand forecasting, and the network structure makes such demand outliers hard to detect. We propose a two-step approach combining clustering with functional outlier detection to identify outlying demand from network bookings observed on the leg level. The first step clusters legs to appropriately partition and pools booking patterns. The second step identifies outliers within each cluster and uses a novel aggregation method across legs to create a ranked alert list of affected instances.
Mô tả: 
CC BY
URI: 
https://link.springer.com/article/10.1007/s00291-023-00714-2
https://dlib.phenikaa-uni.edu.vn/handle/PNK/8403
Bộ sưu tập
OER - Kinh tế và Quản lý
XEM MÔ TẢ

20

XEM TOÀN VĂN

12

Danh sách tệp tin đính kèm:

Ảnh bìa
  • Outlier detection in network revenue management-2023.pdf
      Restricted Access
    • Dung lượng : 11,83 MB

    • Định dạng : Adobe PDF