Thông tin tài liệu

Thông tin siêu dữ liệu biểu ghi
Trường DC Giá trịNgôn ngữ
dc.contributor.authorIbn-Mohammed, T.-
dc.contributor.authorMustapha, K. B.-
dc.contributor.authorAbdulkareem, M.-
dc.date.accessioned2023-10-06T03:44:25Z-
dc.date.available2023-10-06T03:44:25Z-
dc.date.issued2023-
dc.identifier.urihttps://link.springer.com/article/10.1557/s43579-023-00480-w-
dc.identifier.urihttps://dlib.phenikaa-uni.edu.vn/handle/PNK/9488-
dc.descriptionCC-BYvi
dc.description.abstractThe application of functional materials and devices (FM&Ds) underpins numerous products and services, facilitating improved quality of life, but also constitutes a huge environmental burden on the natural ecosystem, prompting the need to quantify their value-chain impact using the bottom-up life cycle assessment (LCA) framework. As the volume of FM&Ds manufactured increases, the LCA calculation speed is constrained due to the time-consuming nature of data collection and processing. Moreover, the bottom-up LCA framework is limited in scope, being typically static or retrospective, and laced with data gap challenges, resulting in the use of proxy values, thus limiting the relevance, accuracy, and quality of results.vi
dc.language.isoenvi
dc.publisherSpringervi
dc.subjectLCAvi
dc.subjectFM&Dsvi
dc.titleToward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devicesvi
dc.typeBookvi
Bộ sưu tập
OER - Khoa học Vật liệu, Ứng dụng

Danh sách tệp tin đính kèm: