Browsing by Advisor Phan, Hong Phuoc
Showing results [1 - 2] / 2
The selective detection and classification of NH3 and H2S gases with H2S gas interference based on conventional SnO2 thin film sensors is still the main problem. In this work, three layers of SnO2/Pt/WO3 nanofilms with different WO3 thicknesses (50, 80, 140, and 260 nm) were fabricated using the sputtering technique. The WO3 top layer were used as a gas filter to further improve the selectivity of sensors. The effect of WO3 thickness on the (NH3, H2, and H2S) gas-sensing properties of the sensors was investigated. At the optimal WO3 thickness of 140 nm, the gas responses of SnO2/Pt/WO3 sensors toward NH3 and H2 gases were slightly lower than those of Pt/SnO2 sensor film, and the gas r... |
A unique combination of high response and fast response-recovery is still a challenge in the development of room-temperature gas sensors. Herein, we demonstrated the on-chip growth of nanojunction-networked SnO2 NW sensors to work under UV-radiation at room temperature. The morphological, compositional, and structural properties of synthesized SnO2 nanowires were examined using field emission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy, respectively. The results presented the SnO2 NWs with smooth surfaces were entangled between the Pt electrode. Besides, the internal properties showed the SnO2 NWs were cr... |