Tìm kiếm theo: Tác giả Dimitris, Koukoulopoulos

Duyệt theo: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hoặc nhập chữ cái đầu tiên:  
Kết quả [1 - 1] / 1
  • Tác giả : Kevin, Ford; Ben, Green; Dimitris, Koukoulopoulos;  Người hướng dẫn: -;  Đồng tác giả: - (2023)

    We study the extent to which divisors of a typical integer n are concentrated. In particular, defining Δ(n):=maxt#{d|n,logd∈[t,t+1]}, we show that Δ(n)⩾(loglogn)0.35332277… for almost all n, a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest.