Browsing by Author Maged, Magdy
Showing results [1 - 1] / 1
Frequent itemset mining (FIM) is the crucial task in mining association rules that finds all frequent k-itemsets in the transaction dataset from which all association rules are extracted. In the big-data era, the datasets are huge and rapidly expanding, so adding new transactions as time advances results in periodic changes in correlations and frequent itemsets present in the dataset. Re-mining the updated dataset is impractical and costly. This problem is solved via incremental frequent itemset mining. |