Tìm kiếm theo: Tác giả Michael C., Burkhart

Duyệt theo: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hoặc nhập chữ cái đầu tiên:  
Kết quả [1 - 1] / 1
  • Tác giả : Michael C., Burkhart;  Người hướng dẫn: -;  Đồng tác giả: - (2022)

    To minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective’s gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update.