Browsing by Author Nguyen Van Quy
Showing results [1 - 5] / 5
Zinc Ferrite (ZnFe2O4, ZFO) nanoparticles (NPs) as a multi-sensing material are successfully synthesised via a hydrothermal method and a following annealing treatment. The as-prepared ZFO-NPs were applied in electrochemical and mass-type sensors by depositing NPs directly on the screen-printed electrode (SPE) and the active electrode of a quartz crystal microbalance (QCM), respectively. The obtained results show the ZFO-NPs possessed excellent detection performance to sulphur dioxide (SO2) in the range of 2.5–20 ppm at room temperature. QCM sensor coated with ZFO-NPs showed a high response, good repeatability, as well as short-response time. Moreover, the modified-SPE with ZFO-NPs sen... |
The sensing material plays a very important role in determining the sensing properties of a gas sensor. In order to synthesise the sensing material, the precursors have a large effect on the properties of the sensing material. In this study, three types of γ-Fe2O3 nanoparticles were prepared with different ferric ion concentrations of [Fe3+] and [Fe2+] as precursors, by a typical facile chemical precipitation process and a following annealing treatment. A mass-type gas sensor was fabricated by using a quartz crystal microbalance (QCM) coated with various γ-Fe2O3 nanoparticles. The morphology, crystallisation, and gas adsorption characteristics of the γ-Fe2O3 nanoparticles were investi... |
An efficient colorimetric probe based on surface-functionalized silver nanoparticles (AgNPs) was prepared for sensitive thiram pesticide detection in water samples. The influence of various surface capping agents including polyhexamethylene biguanide hydr |
For the first time, the influences of phase purity and crystallinity on the electrochemical and electrocatalytic properties of CuCo2O4 (CCO) and CuFe2O4 (CFO)-based electrochemical sensors for the detection of chloramphenicol (CAP) are reported. A series |
Functional two-dimensional (2D) structured nanomaterials, such as, graphene oxide (GO) and molybdenum disulfide (MoS2), exhibit many advantages, including large surface areas and excellent electronic/mechanical/catalytic properties, and have shown to be s |