Current filters:

Current filters:


Date issued

Has File(s)

Search Results

Results 1-5 of 5 (Search time: 0.01 seconds).
  • <<
  • 1
  • >>
  • Authors: Osman, Ahmed I.; Hosny, Mohamed; Eltaweil, Abdelazeem S.;  Advisor: -;  Co-Author: - (2023)

    Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies ...

  • Authors: Farghali, Mohamed; Osman, Ahmed I.;  Advisor: -;  Co-Author: - (2023)

    New technologies, systems, societal organization and policies for energy saving are urgently needed in the context of accelerated climate change, the Ukraine conflict and the past coronavirus disease 2019 pandemic. For instance, concerns about market and policy responses that could lead to new lock-ins, such as investing in liquefied natural gas infrastructure and using all available fossil fuels to compensate for Russian gas supply cuts, may hinder decarbonization efforts. Here we review energy-saving solutions with a focus on the actual energy crisis, green alternatives to fossil fuel heating, energy saving in buildings and transportation, artificial intelligence for sustainable energy, and implications for the environment and society.

  • Authors: Osman, Ahmed I.; Abd El-Monaem, Eman M.; Elgarahy, Ahmed M.;  Advisor: -;  Co-Author: - (2023)

    Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration o...

  • Authors: Rashwan, Ahmed K.; Bai, Haotian; Osman, Ahmed I.;  Advisor: -;  Co-Author: - (2023)

    Food loss and waste is a major issue affecting food security, environmental pollution, producer profitability, consumer prices, and climate change. About 1.3 billion tons of food products are yearly lost globally, with China producing approximately 20 million tons of soybean dregs annually. Here, we review food and agricultural byproducts with emphasis on the strategies to convert this waste into valuable materials. Byproducts can be used for animal and plant nutrition, biogas production, food, extraction of oils and bioactive substances, and production of vinegar, wine, edible coatings and organic fertilizers. For instance, bioactive compounds represent approximately 8–20% of apple pomace, 5–17% of orange peel, 10–25% of grape seeds, 3–15% of pomegranate peel, and 2–13% of date pal...

  • Authors: Osman, Ahmed I.; Zhang, Yubing; Lai, Zhi Ying;  Advisor: -;  Co-Author: - (2023)

    Traditional fertilizers are highly inefficient, with a major loss of nutrients and associated pollution. Alternatively, biochar loaded with phosphorous is a sustainable fertilizer that improves soil structure, stores carbon in soils, and provides plant nutrients in the long run, yet most biochars are not optimal because mechanisms ruling biochar properties are poorly known. This issue can be solved by recent developments in machine learning and computational chemistry. Here we review phosphorus-loaded biochar with emphasis on computational chemistry, machine learning, organic acids, drawbacks of classical fertilizers, biochar production, phosphorus loading, and mechanisms of phosphorous release. Modeling techniques allow for deciphering the influence of individual variables on bioch...